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In this paper we study the dynamical contact problem of the interaction of a deformable 
circular plate with radius b with an elastic or viscoelastic semibounded medium, such as a 
layer, a packet of layers, and a layered half-space. An axisymmetric transverse external 
load of the form p0(r) exp(-i~t), where ~ is the frequency of the vibrations and t is the 
time, acts on the plate. The contact between the plate and the base is frictionless. We 
consider a wide class of conditions of clamping of the edges of the plate: a) sliding con- 
tact, b) hinged edge, c) clamped edge, and d) free edge. 

The axisymmetric problem is solved by an approach previously developed for solving sim- 
ilar two-dimensional problems [i]. The approach was also found to be effective for axisym- 
metric problems. The method is based on using the characteristic forms of vibrations of an 
elastic body of finite size and the method of fictitious absorption, employed for solving 
integral equations arising in dynamical problems of the theory of elasticity and having 
strongly oscillating kernels. 

Algorithms and programs, which make it possible to analyze the main characteristics of 
the interaction of circular plates with the base - deflections of the plate and stresses in 
the plate-base contact region - were developed on the basis of the solutions constructed. 
Numerical analysis was performed for media consisting of an elastic or viscoelastic layer, 
rigidly attached to a nondeformable base. The method also makes it possible to analyze more 
complicated media. 

i. Basic Equations. Construction of the Solution. The basic equation describing vi- 
brations of a circular plate, whose stress-strain state is described by the technical theory 
of bending, has the following form in terms of dimensionless amplitude parameters [the factor 
exp(-i~t) is dropped everywhere] 

Do(a~/Or~ + i / r .a /ar)2w(r)  - -  R H ~ w ( r )  = p(r)  - -  q(r). ( 1 . 1 )  

Here Do = Hz/[12M(I - v02)]; H = h0/h; R = P0/P; M = ~/E0; ~2 = exp(-iy)p~2h2/~; a = b/h; 
= E/(2(I + v)) is the Lame constant for the medium; E0, v0, h0, P0 are, respectively, 

Young's modulus, the Poisson ratio, and the thickness and density of the material of the 
plate; E, v, h, p are the analogous characteristics of the medium; y is the viscosity param- 
eter of the medium (Sorokin's coefficient of losses to internal friction in the material [2]); 

is the dimensionless frequency of the vibrations; w(r) and a are the deflection and radius 
of the plate, scaled to the characteristic geometric parameter h of the medium (for example, 
the thickness of the layer); and p(r) = p0(r) and q(r) are a prescribed load and the reac- 
tion of the base or contact stresses, scaled to ~. This function is determined by solving 
the standard dynamical contact problem of the action of an absolutely rigid circular stamp 
on a medium: 

f k (r, ~) q (~) ~d~ ---- I (r), 0 ~-~ r ~< a, 
0 

k (r, ~) -~ f K (a) ]o (ar) ]o (a~) ada 

(1.2) 

where the function f(r) describes the shape of the base of the stamp and J0(r) is the zeroth- 
order Bessel function. 
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The function K(a) is determined by the type of medium. The contour o is chosen in ac- 
cordance with the radiation principle [3] and is identical to the real half-space (0, ~) for 
a medium with internal friction. For an elastic medium the contour o circumscribes real 
zeros z~ and the poles pL, where ~ = i, 2 ..... No, of the function K(a) from below, and the 
rest of the contour coincides With the real half-space. Equations (i.i) and (1.2) must be 
supplemented by the condition that the displacements be equal in the plate-base contact re- 
gion 

w(r)=f(O,O~<r~<a,z=O 

and the boundary conditions at the edges of the plate r = a and z = 0, which depend on the 
type of contact: 

a) sliding contact 

O w / O r = O  f o r  r = a ,  

Q(r) = 0 3 w / O r  3 + l / r . O 2 w / O r 2 - - l / r 2 . 0 w / O r = O  f o r  r = a ;  

b) hinged edge 

c) clamped edge 

d) free edge 

w(a) = O, M(r)  = 02w/Or 2 + ~o/r.Ow/Or = O, r = a;  

w(r) = Ow/Or = O, r = a; 

M(a)  = Q(a) = 0 

where M(r) and Q(r) are the moment and the reduced transverse force. 

We seek the solution of Eqs. (1.1) and (1.2) in the form 

w (0  = ~ ,  Am~= (r), ~m (r) ~ [ 4  (O~r) - -  ] J o  (O=r)], ( 1 3 ) 

where Jm is chosen as follows: 

a) Jm = 0; 

b, c) Jm = J0(ema)/I0(0ma); 

d) Jm = Jl(0ma)/I1(Oma), ~1 = l, 

where I0(z) and It(z) are zeroth- and first-order modified Bessel functions. 

The unknowns O m for the problems a-d are determined from transcendental equations, 
whose form is determined by the boundary conditions at the edges of the plate r = a: 

a) J1(0ma) = 0; 

b) L(Oma) = 20ma(l - Vo)-llo(ema)Jo(Oma); 
c) L(0ma) = 0; 

d) L(Sma) = 2(1 - v0)li(Sma)Ji(Sma), L(z) = J1(z)I0(z) + Ii(z)J0(z ). 

The solution t(r, ~) of the integral equation (1.2) for the right-hand side w(r) = 
J0(qr) was constructed in [4] by the fictitious-absorption method. Using the results of 
this work for the displacements w(r) of the type (]..3), we determine the contact stresses by 
the relations 

q (r) = ~ A,nqm (r), qm (r) = [t (r, 0,,) - -  i.,t (r, iOm)]. (1.4) 
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A. Far from the edge of the plate the function t(r, q) has the form 

t (r, ~1) Jo Ol r) K-1  01) -[- z~iac-~ V ~l" -t- B ~ ~ zt IRes H -~ (z,) x 
I = 1  

• Jo (z~r) F~ 01, z~) -- ~i ~ c~ Pi IRes H (Pi) ]o (PF~) ~ z~ ires H -1 (z~) Jo (zzr) F~ (p~, z,) , 

The unknowns c k are determined from the equations 

N N 

:hi "~ c~]~] pj IRes H (p~) Jo (p~ra) F x (z~, p~) = ]/'~-~ -? B~Fo (zt, ~1), l =  i,  2 . . . .  ~ N.  

Here 

la [J~ (~a) + Jo 2 (aa)]/2, ~1 = ~z, 
Fo (~, ~1) = [[~a- ~ (aa) J~ Ola) - -  aY~ (aa) Jo (~la)]/012 - -  ~z2); 

& (~,  n) = [ n 4  ( = ~ ) z ~  ~ (n~) - ~s~  ( ~ )  H~o 1~ ( h a ) ] / @  - -  ~ ) ,  

F~ (~, ~} = [~e? ~ {~} H~o 1~ (~} - ~H~o ~) (~} ~/~ (~}]I(~ - n~); 
H (~z) = ]/~z "z + B2K (~z)/c; c = lira [ ~ [ K (~); 

1~1 -*oo 

Hn ( z )  i s  a f i r s t - o r d e r  H a n k e l  f u n c t i o n ;  r k a r e  t h e  p o i n t s  w h i c h  p a r t i t i o n  t h e  i n t e r v a l  ( 0 ,  
a )  i n t o  e q u a l  s e g m e n t s ;  B i s  an  a p p r o x i m a t i o n  p a r a m e t e r ,  w h i c h  i s  c h o s e n  i n  a c c o r d a n c e  w i t h  
t h e  f i c t i c i o u s - a b s o r p t i o n  m e t h o d  (B >> 1 ) ;  zE and  ps  a r e  t h e  z e r o s  and  p o l e s  o f  K ( a ) ,  s u c h  
t h a t  I m z E ,  ps  _> 0 f o r  an e l a s t i c  medium and  I m z s  ps  > 0 f o r  a v i s c o e l a s t i c  medium.  

B. N e a r  t h e  e d g e  o f  t h e  p l a t e  t h e  f u n c t i o n  t ( r ,  ~)  a s s u m e s  t h e  f o r m  

t (r, ~) = ~-* [ c  ( ~ ) / V ' ~  - r ' + ~C (n) F~ (r) - -  

- ~ / 4  ?~ ~ (~-F~ (r~)/1/'2~ - -  r ~- + ~a~F~ (r) F~ (rh) + ~F~ (r, r~) , 

where C(q) = a2n[J12(Na) + Jo2(Da)]JD 2 + B2(2sin(a~))-l; 

N 

F3 (r) = Y, IRes//-I (zl) exp (~zl=) J0 (z~r); 
l=l 

N 

F4 (rk) = ~] 2p~ IRes t I  (pj) ]o (pjrh) [ J 1 (pja) H(1 x) (pja) + 

+ ]o (p~a) H(o 1) (Psal]/sin (pja); 

F 5 (r, rk) = ~ z, IRes H -I (z,) I fI~l, (ZIF) Jo (Zlrk), r • rk, 

I=i [//(g ~ (zlrh) O~o (zzr), r <~ rk. 

The unknown coefficients c k are determined from the equations 

N 

Ck [zzar0 (zlr~) ~- ~ia 2 sin (zza) F 4 (rh)/4] ---- C 0]) sin (zla), I ---- i, 2 ..... N. 

Substituting into the differential equation (i.i) the expressions for w(r) and q(r) in 
the form of Eqs. (1.3) and (1.4), multiplying by ~n(r), and integrating over r from zero to 
a, we obtain a system of linear algebraic equations for the unknown coefficients Am: 
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oo 

anA,~ + ~ s,,nAm = p~, n = t, 2, . . . ,  oo. 
r a ~ l  (1.5) 

Here  stun= qm(r)(p,~(r)rdr;p,,-= p(r)~n(r)rdr; cz,,= (DoO~--RgQ2)h,~; A ~ =  q~(r)rdr. 
0 0 0 

The elements of the matrix S = IIsmnll and the functions A n are calculated by direct inte- 
gration, taking into account Eq. (1.4), and are analytic functions of the frequency ~: 

�9 s ~ , ,  = T(o , , ,  o~)  - i . ,T (O , , ,  ~0,~) - -  ],,T(~O,~, 0.~) + 

+ ]n]mT(~O,,, ~0.,). 

The resultant of the contact pressures or the reaction of the base is determined by the 

formula 

a 

Q = ~ q (r) rdr -=- ~ Ak [T (0, Oh) --  ]kT (0, iOk)T. 
0 h ~ l  

(1.6) 

The function T(a, n) is the Bessel transform of the function t(r, q) and far from the 
edge of the plate it has the form 

N N 

T (~z, B) ---- a F o (cz, ~1) ]/r~r + B2 - -  ni ~] cu E Pj Res H (pj) 
h=l j=l 

Jo(pTh)Fl (a, Pj)} / c/H (a), 

while near the edge of the plate 

T (a, N) = {COl ) sin (aa)/o~ --  ck []o (arh) + ~xia 2 sin (~a) F4 (rk)/4/a] c/H (~). 
h = l  

In order to construct an approximate solution w(r) and q(r) it is sufficient to retain 
in Eqs. (1.3)-(1.5) only several terms of the series in order to achieve prescribed accu- 
racy, since the coefficients A m approach zero rapidly as the parameter m increases. 

2. Numerical Analysis of the Solution. The numerical analysis was performed for elastic 
and viscoelastic layer, rigidly attached to a nondeformable base, and two types of loads: 
p(r) = 1 and p(r) = 5(r), where 5(r) is the Dirac delta function. The layer occupies the 
region -~o E x, y ~ ~, 0 5 z 5 h. 

We studied the effect of the conditions of clamping of the plate, the type of loading, 
the viscosity of the medium, and the rigidity and geometric dimensions of the plate on the 
distribution of the amplitudes of the deflections w(r), the contact pressures q(r), and total 
forces Q in the region of contact as a function of the reduced frequency E. 

For the indicated medium the function K(~) has the form presented in [3, 4]. For nu- 
merical implementation, the real and complex zeros and the poles K(~) are calculated first, 
and then the approximating function 

N 

K ,  (~) = c ( ~  + .B-~) - ~  I I  (~0~ - z~) (~:  - pD - I  
h = l  

is constructed, such that [K(a) - K,(a) I < E for any prescribed number ~ > 0. According to 
[3], this also guarantees that the solutions of the integral equations Kq = w and K,q = w 

are close. Next, the amplitude-frequency characteristics of the problem are calculated 
from the formulas (1.3), (1.4), and (1.6). 

Figure 1 illustrates the effect of the rigidity of the plate M = D/E 0 for sliding con- 
tact at the edge on the distribution of the amplitude of the deflections Re w(r) when a uni- 
formly distributed load of unit amplitude p(r) = 1 acts on the plate. The curves 1-3 corre- 
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spond to M = 0.4, 0.04, and 0.004. The remaining parameters are: R = 1.25, H = 0.8, a = 
5, ~ = 2.6, v = 0.3, v0 = 0.3, and ~ = 0. 

Analysis shows that when the rigidity of the plate E 0 decreases (i.e., the parameter M 
increases with fixed rigidity of the medium), the amplitudes w(r) and q(r) and their oscil- 
lations increase, and the more rigid the plate, the more uniform the distribution of deflec- 
tions and contact pressures is. 

Similar results can be obtained by studying the effect of the geometric parameters of 
the plate on the behavior of w(r) and q(r) for specific values of ~. As the radius of the 
plate increases, the oscillations increase, and as the thickness of the plate increases, 
the vibrations decrease. These relations are more pronounced at frequencies above the criti- 
cal frequency of the waveguide in the elastic medium ~, (for a layer ~, = ~/2). At frequen- 
cies ~ S ~, a change in the elastic and geometric parameters can have virtually no effect 
on the amplitude of the contact stresses and deflections. 

The effect of the viscosity 7 of the base (Fig. 2) indicates that the internal friction 
significantly affects the resonances of the system. As y increases, the amplitude of the 
vibrations decreases. The curves 1-4 correspond to y = 0, 0.01, 0.i, and 0.2, where p(r) = 
I, a = 7, M = 0.004, R = 1.25, H = 0.8, v = 0.3, v 0 = 0.3, and r = 0. 

The difference in the maximum amplitudes of the vibrations for different values of 
confirms that the internal friction in the material of the base must be taken into account 
in the dynamical calculation of foundations and structures as a whole. 

3. Resonances of the System. Figure 3 illustrates the effect of the relative thick- 
ness of the plate H = h0/h on the resonances of the system consisting of a circular plate 
and an elastic layer. The curves 1-4 correspond to H = 0.5, 1.5, 2.5, and 4 with p(r) = 
i, a = 11.5, M = 0.0004, R = 1.25, v = 0.3, ~0 = 0.3, 7 = 0, and r = 0. It is obvious that 
as the parameter H increases, the resonance frequency decreases and the peak becomes nar- 
rower. In the region ~ > ~,, where ~, is the critical frequency of excitation of waves and 
~, = z/2 in a layer, resonance of the system is bounded, and for ~ S ~, and starting at some 
ratio of the geometric and elastic parameters of the plate-elastic base system there appear 
so-called B resonances, at which the amplitude of the vibrations grows without bound. These 
resonances for a system consisting of an absolutely stiff stamp or beam - elastic strip were 
studied in [i, 5], and they have real values for ~ i ~, and complex values for ~ > S,. For 
this reason, in Fig. 3 for ~ > 7/2 and real values of the frequencies the growth of the am- 
plitude of the vibrations is bounded. 

For the plate-viscoelastic layer system the amplitudes of the main characteristics will 
grow without bound only for complex values of the vibrational frequencies, so-called char- 
acteristic frequencies. For a viscoelastic base, to each characteristic form of the vibra- 
tions there is associated a complex characteristic frequency. The resonance frequencies 
are determined by the vanishing of the determinant of the system (1.5): 

A(Q) = detll~16~z + shzll~,t - -  0 

where 6ks is the Kronecker delta function. 
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The method employed in this work for searching for the complex roots of this equation 
depends on the "principle of the argument" well known in theory and, significantly, there 
is no need to have initial approximations in order to search for the roots and it is also 
not necessary to have any information about the multiplicity of the roots. The method indi- 
cated above was implemented in [6] and employed in the present work. 

The results of the numerical analysis also permit drawing the following conclusions. 
As the radius of the plate increases, the number of resonance curves increases. As the 
rigidity of the plate decreases (the parameter M increases) while its geometric dimensions 
remain fixed, the number of resonances also increases. The value of the first resonance 
frequency does not change with M (a and H are fixed) and corresponds to the resonance for 
an absolutely rigid stamp (Fig. 4, curves 1-3 correspond to M = 4"]_0 -3 , 4-10 -~, 4-10 -7 , 
p(r) = 6(r - 0.I), a = 7, R = 3.5, H = 0.8, v = 0.3, v 0 = 0.3, ~ = 0.1). 

We note that the results of [5] for the limits of applicability of Winkler's hypothesis 
remain valid for the axisymmetric problem. 

We thank I. I. Vorovich for a discussion of this work and for remarks. 
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